Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
and2(true, y) -> y
and2(false, y) -> false
eq2(nil, nil) -> true
eq2(cons2(t, l), nil) -> false
eq2(nil, cons2(t, l)) -> false
eq2(cons2(t, l), cons2(t', l')) -> and2(eq2(t, t'), eq2(l, l'))
eq2(var1(l), var1(l')) -> eq2(l, l')
eq2(var1(l), apply2(t, s)) -> false
eq2(var1(l), lambda2(x, t)) -> false
eq2(apply2(t, s), var1(l)) -> false
eq2(apply2(t, s), apply2(t', s')) -> and2(eq2(t, t'), eq2(s, s'))
eq2(apply2(t, s), lambda2(x, t)) -> false
eq2(lambda2(x, t), var1(l)) -> false
eq2(lambda2(x, t), apply2(t, s)) -> false
eq2(lambda2(x, t), lambda2(x', t')) -> and2(eq2(x, x'), eq2(t, t'))
if3(true, var1(k), var1(l')) -> var1(k)
if3(false, var1(k), var1(l')) -> var1(l')
ren3(var1(l), var1(k), var1(l')) -> if3(eq2(l, l'), var1(k), var1(l'))
ren3(x, y, apply2(t, s)) -> apply2(ren3(x, y, t), ren3(x, y, s))
ren3(x, y, lambda2(z, t)) -> lambda2(var1(cons2(x, cons2(y, cons2(lambda2(z, t), nil)))), ren3(x, y, ren3(z, var1(cons2(x, cons2(y, cons2(lambda2(z, t), nil)))), t)))
Q is empty.
↳ QTRS
↳ Non-Overlap Check
Q restricted rewrite system:
The TRS R consists of the following rules:
and2(true, y) -> y
and2(false, y) -> false
eq2(nil, nil) -> true
eq2(cons2(t, l), nil) -> false
eq2(nil, cons2(t, l)) -> false
eq2(cons2(t, l), cons2(t', l')) -> and2(eq2(t, t'), eq2(l, l'))
eq2(var1(l), var1(l')) -> eq2(l, l')
eq2(var1(l), apply2(t, s)) -> false
eq2(var1(l), lambda2(x, t)) -> false
eq2(apply2(t, s), var1(l)) -> false
eq2(apply2(t, s), apply2(t', s')) -> and2(eq2(t, t'), eq2(s, s'))
eq2(apply2(t, s), lambda2(x, t)) -> false
eq2(lambda2(x, t), var1(l)) -> false
eq2(lambda2(x, t), apply2(t, s)) -> false
eq2(lambda2(x, t), lambda2(x', t')) -> and2(eq2(x, x'), eq2(t, t'))
if3(true, var1(k), var1(l')) -> var1(k)
if3(false, var1(k), var1(l')) -> var1(l')
ren3(var1(l), var1(k), var1(l')) -> if3(eq2(l, l'), var1(k), var1(l'))
ren3(x, y, apply2(t, s)) -> apply2(ren3(x, y, t), ren3(x, y, s))
ren3(x, y, lambda2(z, t)) -> lambda2(var1(cons2(x, cons2(y, cons2(lambda2(z, t), nil)))), ren3(x, y, ren3(z, var1(cons2(x, cons2(y, cons2(lambda2(z, t), nil)))), t)))
Q is empty.
The TRS is non-overlapping. Hence, we can switch to innermost.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
and2(true, y) -> y
and2(false, y) -> false
eq2(nil, nil) -> true
eq2(cons2(t, l), nil) -> false
eq2(nil, cons2(t, l)) -> false
eq2(cons2(t, l), cons2(t', l')) -> and2(eq2(t, t'), eq2(l, l'))
eq2(var1(l), var1(l')) -> eq2(l, l')
eq2(var1(l), apply2(t, s)) -> false
eq2(var1(l), lambda2(x, t)) -> false
eq2(apply2(t, s), var1(l)) -> false
eq2(apply2(t, s), apply2(t', s')) -> and2(eq2(t, t'), eq2(s, s'))
eq2(apply2(t, s), lambda2(x, t)) -> false
eq2(lambda2(x, t), var1(l)) -> false
eq2(lambda2(x, t), apply2(t, s)) -> false
eq2(lambda2(x, t), lambda2(x', t')) -> and2(eq2(x, x'), eq2(t, t'))
if3(true, var1(k), var1(l')) -> var1(k)
if3(false, var1(k), var1(l')) -> var1(l')
ren3(var1(l), var1(k), var1(l')) -> if3(eq2(l, l'), var1(k), var1(l'))
ren3(x, y, apply2(t, s)) -> apply2(ren3(x, y, t), ren3(x, y, s))
ren3(x, y, lambda2(z, t)) -> lambda2(var1(cons2(x, cons2(y, cons2(lambda2(z, t), nil)))), ren3(x, y, ren3(z, var1(cons2(x, cons2(y, cons2(lambda2(z, t), nil)))), t)))
The set Q consists of the following terms:
and2(true, x0)
and2(false, x0)
eq2(nil, nil)
eq2(cons2(x0, x1), nil)
eq2(nil, cons2(x0, x1))
eq2(cons2(x0, x1), cons2(x2, x3))
eq2(var1(x0), var1(x1))
eq2(var1(x0), apply2(x1, x2))
eq2(var1(x0), lambda2(x1, x2))
eq2(apply2(x0, x1), var1(x2))
eq2(apply2(x0, x1), apply2(x2, x3))
eq2(apply2(x0, x1), lambda2(x2, x0))
eq2(lambda2(x0, x1), var1(x2))
eq2(lambda2(x0, x1), apply2(x1, x2))
eq2(lambda2(x0, x1), lambda2(x2, x3))
if3(true, var1(x0), var1(x1))
if3(false, var1(x0), var1(x1))
ren3(var1(x0), var1(x1), var1(x2))
ren3(x0, x1, apply2(x2, x3))
ren3(x0, x1, lambda2(x2, x3))
Q DP problem:
The TRS P consists of the following rules:
EQ2(var1(l), var1(l')) -> EQ2(l, l')
REN3(x, y, apply2(t, s)) -> REN3(x, y, t)
EQ2(apply2(t, s), apply2(t', s')) -> EQ2(t, t')
EQ2(lambda2(x, t), lambda2(x', t')) -> EQ2(x, x')
EQ2(cons2(t, l), cons2(t', l')) -> EQ2(l, l')
EQ2(apply2(t, s), apply2(t', s')) -> AND2(eq2(t, t'), eq2(s, s'))
EQ2(cons2(t, l), cons2(t', l')) -> EQ2(t, t')
REN3(var1(l), var1(k), var1(l')) -> EQ2(l, l')
EQ2(lambda2(x, t), lambda2(x', t')) -> AND2(eq2(x, x'), eq2(t, t'))
EQ2(cons2(t, l), cons2(t', l')) -> AND2(eq2(t, t'), eq2(l, l'))
REN3(x, y, lambda2(z, t)) -> REN3(x, y, ren3(z, var1(cons2(x, cons2(y, cons2(lambda2(z, t), nil)))), t))
EQ2(lambda2(x, t), lambda2(x', t')) -> EQ2(t, t')
EQ2(apply2(t, s), apply2(t', s')) -> EQ2(s, s')
REN3(var1(l), var1(k), var1(l')) -> IF3(eq2(l, l'), var1(k), var1(l'))
REN3(x, y, lambda2(z, t)) -> REN3(z, var1(cons2(x, cons2(y, cons2(lambda2(z, t), nil)))), t)
REN3(x, y, apply2(t, s)) -> REN3(x, y, s)
The TRS R consists of the following rules:
and2(true, y) -> y
and2(false, y) -> false
eq2(nil, nil) -> true
eq2(cons2(t, l), nil) -> false
eq2(nil, cons2(t, l)) -> false
eq2(cons2(t, l), cons2(t', l')) -> and2(eq2(t, t'), eq2(l, l'))
eq2(var1(l), var1(l')) -> eq2(l, l')
eq2(var1(l), apply2(t, s)) -> false
eq2(var1(l), lambda2(x, t)) -> false
eq2(apply2(t, s), var1(l)) -> false
eq2(apply2(t, s), apply2(t', s')) -> and2(eq2(t, t'), eq2(s, s'))
eq2(apply2(t, s), lambda2(x, t)) -> false
eq2(lambda2(x, t), var1(l)) -> false
eq2(lambda2(x, t), apply2(t, s)) -> false
eq2(lambda2(x, t), lambda2(x', t')) -> and2(eq2(x, x'), eq2(t, t'))
if3(true, var1(k), var1(l')) -> var1(k)
if3(false, var1(k), var1(l')) -> var1(l')
ren3(var1(l), var1(k), var1(l')) -> if3(eq2(l, l'), var1(k), var1(l'))
ren3(x, y, apply2(t, s)) -> apply2(ren3(x, y, t), ren3(x, y, s))
ren3(x, y, lambda2(z, t)) -> lambda2(var1(cons2(x, cons2(y, cons2(lambda2(z, t), nil)))), ren3(x, y, ren3(z, var1(cons2(x, cons2(y, cons2(lambda2(z, t), nil)))), t)))
The set Q consists of the following terms:
and2(true, x0)
and2(false, x0)
eq2(nil, nil)
eq2(cons2(x0, x1), nil)
eq2(nil, cons2(x0, x1))
eq2(cons2(x0, x1), cons2(x2, x3))
eq2(var1(x0), var1(x1))
eq2(var1(x0), apply2(x1, x2))
eq2(var1(x0), lambda2(x1, x2))
eq2(apply2(x0, x1), var1(x2))
eq2(apply2(x0, x1), apply2(x2, x3))
eq2(apply2(x0, x1), lambda2(x2, x0))
eq2(lambda2(x0, x1), var1(x2))
eq2(lambda2(x0, x1), apply2(x1, x2))
eq2(lambda2(x0, x1), lambda2(x2, x3))
if3(true, var1(x0), var1(x1))
if3(false, var1(x0), var1(x1))
ren3(var1(x0), var1(x1), var1(x2))
ren3(x0, x1, apply2(x2, x3))
ren3(x0, x1, lambda2(x2, x3))
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
EQ2(var1(l), var1(l')) -> EQ2(l, l')
REN3(x, y, apply2(t, s)) -> REN3(x, y, t)
EQ2(apply2(t, s), apply2(t', s')) -> EQ2(t, t')
EQ2(lambda2(x, t), lambda2(x', t')) -> EQ2(x, x')
EQ2(cons2(t, l), cons2(t', l')) -> EQ2(l, l')
EQ2(apply2(t, s), apply2(t', s')) -> AND2(eq2(t, t'), eq2(s, s'))
EQ2(cons2(t, l), cons2(t', l')) -> EQ2(t, t')
REN3(var1(l), var1(k), var1(l')) -> EQ2(l, l')
EQ2(lambda2(x, t), lambda2(x', t')) -> AND2(eq2(x, x'), eq2(t, t'))
EQ2(cons2(t, l), cons2(t', l')) -> AND2(eq2(t, t'), eq2(l, l'))
REN3(x, y, lambda2(z, t)) -> REN3(x, y, ren3(z, var1(cons2(x, cons2(y, cons2(lambda2(z, t), nil)))), t))
EQ2(lambda2(x, t), lambda2(x', t')) -> EQ2(t, t')
EQ2(apply2(t, s), apply2(t', s')) -> EQ2(s, s')
REN3(var1(l), var1(k), var1(l')) -> IF3(eq2(l, l'), var1(k), var1(l'))
REN3(x, y, lambda2(z, t)) -> REN3(z, var1(cons2(x, cons2(y, cons2(lambda2(z, t), nil)))), t)
REN3(x, y, apply2(t, s)) -> REN3(x, y, s)
The TRS R consists of the following rules:
and2(true, y) -> y
and2(false, y) -> false
eq2(nil, nil) -> true
eq2(cons2(t, l), nil) -> false
eq2(nil, cons2(t, l)) -> false
eq2(cons2(t, l), cons2(t', l')) -> and2(eq2(t, t'), eq2(l, l'))
eq2(var1(l), var1(l')) -> eq2(l, l')
eq2(var1(l), apply2(t, s)) -> false
eq2(var1(l), lambda2(x, t)) -> false
eq2(apply2(t, s), var1(l)) -> false
eq2(apply2(t, s), apply2(t', s')) -> and2(eq2(t, t'), eq2(s, s'))
eq2(apply2(t, s), lambda2(x, t)) -> false
eq2(lambda2(x, t), var1(l)) -> false
eq2(lambda2(x, t), apply2(t, s)) -> false
eq2(lambda2(x, t), lambda2(x', t')) -> and2(eq2(x, x'), eq2(t, t'))
if3(true, var1(k), var1(l')) -> var1(k)
if3(false, var1(k), var1(l')) -> var1(l')
ren3(var1(l), var1(k), var1(l')) -> if3(eq2(l, l'), var1(k), var1(l'))
ren3(x, y, apply2(t, s)) -> apply2(ren3(x, y, t), ren3(x, y, s))
ren3(x, y, lambda2(z, t)) -> lambda2(var1(cons2(x, cons2(y, cons2(lambda2(z, t), nil)))), ren3(x, y, ren3(z, var1(cons2(x, cons2(y, cons2(lambda2(z, t), nil)))), t)))
The set Q consists of the following terms:
and2(true, x0)
and2(false, x0)
eq2(nil, nil)
eq2(cons2(x0, x1), nil)
eq2(nil, cons2(x0, x1))
eq2(cons2(x0, x1), cons2(x2, x3))
eq2(var1(x0), var1(x1))
eq2(var1(x0), apply2(x1, x2))
eq2(var1(x0), lambda2(x1, x2))
eq2(apply2(x0, x1), var1(x2))
eq2(apply2(x0, x1), apply2(x2, x3))
eq2(apply2(x0, x1), lambda2(x2, x0))
eq2(lambda2(x0, x1), var1(x2))
eq2(lambda2(x0, x1), apply2(x1, x2))
eq2(lambda2(x0, x1), lambda2(x2, x3))
if3(true, var1(x0), var1(x1))
if3(false, var1(x0), var1(x1))
ren3(var1(x0), var1(x1), var1(x2))
ren3(x0, x1, apply2(x2, x3))
ren3(x0, x1, lambda2(x2, x3))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 2 SCCs with 5 less nodes.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
EQ2(var1(l), var1(l')) -> EQ2(l, l')
EQ2(apply2(t, s), apply2(t', s')) -> EQ2(t, t')
EQ2(lambda2(x, t), lambda2(x', t')) -> EQ2(x, x')
EQ2(cons2(t, l), cons2(t', l')) -> EQ2(l, l')
EQ2(lambda2(x, t), lambda2(x', t')) -> EQ2(t, t')
EQ2(apply2(t, s), apply2(t', s')) -> EQ2(s, s')
EQ2(cons2(t, l), cons2(t', l')) -> EQ2(t, t')
The TRS R consists of the following rules:
and2(true, y) -> y
and2(false, y) -> false
eq2(nil, nil) -> true
eq2(cons2(t, l), nil) -> false
eq2(nil, cons2(t, l)) -> false
eq2(cons2(t, l), cons2(t', l')) -> and2(eq2(t, t'), eq2(l, l'))
eq2(var1(l), var1(l')) -> eq2(l, l')
eq2(var1(l), apply2(t, s)) -> false
eq2(var1(l), lambda2(x, t)) -> false
eq2(apply2(t, s), var1(l)) -> false
eq2(apply2(t, s), apply2(t', s')) -> and2(eq2(t, t'), eq2(s, s'))
eq2(apply2(t, s), lambda2(x, t)) -> false
eq2(lambda2(x, t), var1(l)) -> false
eq2(lambda2(x, t), apply2(t, s)) -> false
eq2(lambda2(x, t), lambda2(x', t')) -> and2(eq2(x, x'), eq2(t, t'))
if3(true, var1(k), var1(l')) -> var1(k)
if3(false, var1(k), var1(l')) -> var1(l')
ren3(var1(l), var1(k), var1(l')) -> if3(eq2(l, l'), var1(k), var1(l'))
ren3(x, y, apply2(t, s)) -> apply2(ren3(x, y, t), ren3(x, y, s))
ren3(x, y, lambda2(z, t)) -> lambda2(var1(cons2(x, cons2(y, cons2(lambda2(z, t), nil)))), ren3(x, y, ren3(z, var1(cons2(x, cons2(y, cons2(lambda2(z, t), nil)))), t)))
The set Q consists of the following terms:
and2(true, x0)
and2(false, x0)
eq2(nil, nil)
eq2(cons2(x0, x1), nil)
eq2(nil, cons2(x0, x1))
eq2(cons2(x0, x1), cons2(x2, x3))
eq2(var1(x0), var1(x1))
eq2(var1(x0), apply2(x1, x2))
eq2(var1(x0), lambda2(x1, x2))
eq2(apply2(x0, x1), var1(x2))
eq2(apply2(x0, x1), apply2(x2, x3))
eq2(apply2(x0, x1), lambda2(x2, x0))
eq2(lambda2(x0, x1), var1(x2))
eq2(lambda2(x0, x1), apply2(x1, x2))
eq2(lambda2(x0, x1), lambda2(x2, x3))
if3(true, var1(x0), var1(x1))
if3(false, var1(x0), var1(x1))
ren3(var1(x0), var1(x1), var1(x2))
ren3(x0, x1, apply2(x2, x3))
ren3(x0, x1, lambda2(x2, x3))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
EQ2(apply2(t, s), apply2(t', s')) -> EQ2(t, t')
EQ2(lambda2(x, t), lambda2(x', t')) -> EQ2(x, x')
EQ2(cons2(t, l), cons2(t', l')) -> EQ2(l, l')
EQ2(lambda2(x, t), lambda2(x', t')) -> EQ2(t, t')
EQ2(apply2(t, s), apply2(t', s')) -> EQ2(s, s')
EQ2(cons2(t, l), cons2(t', l')) -> EQ2(t, t')
Used argument filtering: EQ2(x1, x2) = x2
var1(x1) = x1
apply2(x1, x2) = apply2(x1, x2)
lambda2(x1, x2) = lambda2(x1, x2)
cons2(x1, x2) = cons2(x1, x2)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
EQ2(var1(l), var1(l')) -> EQ2(l, l')
The TRS R consists of the following rules:
and2(true, y) -> y
and2(false, y) -> false
eq2(nil, nil) -> true
eq2(cons2(t, l), nil) -> false
eq2(nil, cons2(t, l)) -> false
eq2(cons2(t, l), cons2(t', l')) -> and2(eq2(t, t'), eq2(l, l'))
eq2(var1(l), var1(l')) -> eq2(l, l')
eq2(var1(l), apply2(t, s)) -> false
eq2(var1(l), lambda2(x, t)) -> false
eq2(apply2(t, s), var1(l)) -> false
eq2(apply2(t, s), apply2(t', s')) -> and2(eq2(t, t'), eq2(s, s'))
eq2(apply2(t, s), lambda2(x, t)) -> false
eq2(lambda2(x, t), var1(l)) -> false
eq2(lambda2(x, t), apply2(t, s)) -> false
eq2(lambda2(x, t), lambda2(x', t')) -> and2(eq2(x, x'), eq2(t, t'))
if3(true, var1(k), var1(l')) -> var1(k)
if3(false, var1(k), var1(l')) -> var1(l')
ren3(var1(l), var1(k), var1(l')) -> if3(eq2(l, l'), var1(k), var1(l'))
ren3(x, y, apply2(t, s)) -> apply2(ren3(x, y, t), ren3(x, y, s))
ren3(x, y, lambda2(z, t)) -> lambda2(var1(cons2(x, cons2(y, cons2(lambda2(z, t), nil)))), ren3(x, y, ren3(z, var1(cons2(x, cons2(y, cons2(lambda2(z, t), nil)))), t)))
The set Q consists of the following terms:
and2(true, x0)
and2(false, x0)
eq2(nil, nil)
eq2(cons2(x0, x1), nil)
eq2(nil, cons2(x0, x1))
eq2(cons2(x0, x1), cons2(x2, x3))
eq2(var1(x0), var1(x1))
eq2(var1(x0), apply2(x1, x2))
eq2(var1(x0), lambda2(x1, x2))
eq2(apply2(x0, x1), var1(x2))
eq2(apply2(x0, x1), apply2(x2, x3))
eq2(apply2(x0, x1), lambda2(x2, x0))
eq2(lambda2(x0, x1), var1(x2))
eq2(lambda2(x0, x1), apply2(x1, x2))
eq2(lambda2(x0, x1), lambda2(x2, x3))
if3(true, var1(x0), var1(x1))
if3(false, var1(x0), var1(x1))
ren3(var1(x0), var1(x1), var1(x2))
ren3(x0, x1, apply2(x2, x3))
ren3(x0, x1, lambda2(x2, x3))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
EQ2(var1(l), var1(l')) -> EQ2(l, l')
Used argument filtering: EQ2(x1, x2) = x2
var1(x1) = var1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
and2(true, y) -> y
and2(false, y) -> false
eq2(nil, nil) -> true
eq2(cons2(t, l), nil) -> false
eq2(nil, cons2(t, l)) -> false
eq2(cons2(t, l), cons2(t', l')) -> and2(eq2(t, t'), eq2(l, l'))
eq2(var1(l), var1(l')) -> eq2(l, l')
eq2(var1(l), apply2(t, s)) -> false
eq2(var1(l), lambda2(x, t)) -> false
eq2(apply2(t, s), var1(l)) -> false
eq2(apply2(t, s), apply2(t', s')) -> and2(eq2(t, t'), eq2(s, s'))
eq2(apply2(t, s), lambda2(x, t)) -> false
eq2(lambda2(x, t), var1(l)) -> false
eq2(lambda2(x, t), apply2(t, s)) -> false
eq2(lambda2(x, t), lambda2(x', t')) -> and2(eq2(x, x'), eq2(t, t'))
if3(true, var1(k), var1(l')) -> var1(k)
if3(false, var1(k), var1(l')) -> var1(l')
ren3(var1(l), var1(k), var1(l')) -> if3(eq2(l, l'), var1(k), var1(l'))
ren3(x, y, apply2(t, s)) -> apply2(ren3(x, y, t), ren3(x, y, s))
ren3(x, y, lambda2(z, t)) -> lambda2(var1(cons2(x, cons2(y, cons2(lambda2(z, t), nil)))), ren3(x, y, ren3(z, var1(cons2(x, cons2(y, cons2(lambda2(z, t), nil)))), t)))
The set Q consists of the following terms:
and2(true, x0)
and2(false, x0)
eq2(nil, nil)
eq2(cons2(x0, x1), nil)
eq2(nil, cons2(x0, x1))
eq2(cons2(x0, x1), cons2(x2, x3))
eq2(var1(x0), var1(x1))
eq2(var1(x0), apply2(x1, x2))
eq2(var1(x0), lambda2(x1, x2))
eq2(apply2(x0, x1), var1(x2))
eq2(apply2(x0, x1), apply2(x2, x3))
eq2(apply2(x0, x1), lambda2(x2, x0))
eq2(lambda2(x0, x1), var1(x2))
eq2(lambda2(x0, x1), apply2(x1, x2))
eq2(lambda2(x0, x1), lambda2(x2, x3))
if3(true, var1(x0), var1(x1))
if3(false, var1(x0), var1(x1))
ren3(var1(x0), var1(x1), var1(x2))
ren3(x0, x1, apply2(x2, x3))
ren3(x0, x1, lambda2(x2, x3))
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
REN3(x, y, apply2(t, s)) -> REN3(x, y, t)
REN3(x, y, lambda2(z, t)) -> REN3(x, y, ren3(z, var1(cons2(x, cons2(y, cons2(lambda2(z, t), nil)))), t))
REN3(x, y, lambda2(z, t)) -> REN3(z, var1(cons2(x, cons2(y, cons2(lambda2(z, t), nil)))), t)
REN3(x, y, apply2(t, s)) -> REN3(x, y, s)
The TRS R consists of the following rules:
and2(true, y) -> y
and2(false, y) -> false
eq2(nil, nil) -> true
eq2(cons2(t, l), nil) -> false
eq2(nil, cons2(t, l)) -> false
eq2(cons2(t, l), cons2(t', l')) -> and2(eq2(t, t'), eq2(l, l'))
eq2(var1(l), var1(l')) -> eq2(l, l')
eq2(var1(l), apply2(t, s)) -> false
eq2(var1(l), lambda2(x, t)) -> false
eq2(apply2(t, s), var1(l)) -> false
eq2(apply2(t, s), apply2(t', s')) -> and2(eq2(t, t'), eq2(s, s'))
eq2(apply2(t, s), lambda2(x, t)) -> false
eq2(lambda2(x, t), var1(l)) -> false
eq2(lambda2(x, t), apply2(t, s)) -> false
eq2(lambda2(x, t), lambda2(x', t')) -> and2(eq2(x, x'), eq2(t, t'))
if3(true, var1(k), var1(l')) -> var1(k)
if3(false, var1(k), var1(l')) -> var1(l')
ren3(var1(l), var1(k), var1(l')) -> if3(eq2(l, l'), var1(k), var1(l'))
ren3(x, y, apply2(t, s)) -> apply2(ren3(x, y, t), ren3(x, y, s))
ren3(x, y, lambda2(z, t)) -> lambda2(var1(cons2(x, cons2(y, cons2(lambda2(z, t), nil)))), ren3(x, y, ren3(z, var1(cons2(x, cons2(y, cons2(lambda2(z, t), nil)))), t)))
The set Q consists of the following terms:
and2(true, x0)
and2(false, x0)
eq2(nil, nil)
eq2(cons2(x0, x1), nil)
eq2(nil, cons2(x0, x1))
eq2(cons2(x0, x1), cons2(x2, x3))
eq2(var1(x0), var1(x1))
eq2(var1(x0), apply2(x1, x2))
eq2(var1(x0), lambda2(x1, x2))
eq2(apply2(x0, x1), var1(x2))
eq2(apply2(x0, x1), apply2(x2, x3))
eq2(apply2(x0, x1), lambda2(x2, x0))
eq2(lambda2(x0, x1), var1(x2))
eq2(lambda2(x0, x1), apply2(x1, x2))
eq2(lambda2(x0, x1), lambda2(x2, x3))
if3(true, var1(x0), var1(x1))
if3(false, var1(x0), var1(x1))
ren3(var1(x0), var1(x1), var1(x2))
ren3(x0, x1, apply2(x2, x3))
ren3(x0, x1, lambda2(x2, x3))
We have to consider all minimal (P,Q,R)-chains.